Publications
Journal papers
-
Quantifying the informativity of emission lines to infer physical conditions in giant molecular clouds.
I. Application to model predictions
L. Einig, P. Palud, A. Roueff, J. Pety, et al.
Astronomy & Astrophysics, 2024 -
Neural network-based emulation of interstellar medium models
P. Palud, L. Einig, F. Le Petit, E. Bron, et al.
Astronomy & Astrophysics, 2023 -
Deep learning denoising by dimension reduction: Application to the ORION-B line cubes
L. Einig, J. Pety, A. Roueff, P. Vandame, et al.
Astronomy & Astrophysics, 2023
National conferences
- Réduction d’un modèle astrophysique par réseaux de neurones
L. Einig, P. Palud, J. Chanussot, J. Pety, et al.
GRETSI'23, 2023
Workshop and conference abstracts
-
An information-theory based method to determine the best emission lines to constrain the physical conditions of interstellar clouds
PCMI, 2024 -
Deep learning denoising of molecular line cubes by dimension reduction
DeepLearning3D, 2024 -
Neural network-based emulation of interstellar medium models
SF2A, 2024 -
Efficient and fast deep learning approaches to denoise large radioastronomy line cubes and to emulate sophisticated astrophysical models
ML-IAP/CCA, 2023 -
Deep learning denoising by dimension reduction: Application to molecular line cubes
Olympian Symposium, 2023