Publications

Journal papers

  • Quantifying the informativity of emission lines to infer physical conditions in giant molecular clouds.
    I. Application to model predictions  
    L. Einig, P. Palud, A. Roueff, J. Pety, et al.
    Astronomy & Astrophysics, 2024

  • Neural network-based emulation of interstellar medium models  
    P. Palud, L. Einig, F. Le Petit, E. Bron, et al.
    Astronomy & Astrophysics, 2023

  • Deep learning denoising by dimension reduction: Application to the ORION-B line cubes  
    L. Einig, J. Pety, A. Roueff, P. Vandame, et al.
    Astronomy & Astrophysics, 2023

National conferences

  • Réduction d’un modèle astrophysique par réseaux de neurones    
    L. Einig, P. Palud, J. Chanussot, J. Pety, et al.
    GRETSI'23, 2023

Workshop and conference abstracts

  • An information-theory based method to determine the best emission lines to constrain the physical conditions of interstellar clouds    
    PCMI, 2024

  • Deep learning denoising of molecular line cubes by dimension reduction  
    DeepLearning3D, 2024

  • Neural network-based emulation of interstellar medium models  
    SF2A, 2024

  • Efficient and fast deep learning approaches to denoise large radioastronomy line cubes ​and to emulate sophisticated astrophysical models  
    ML-IAP/CCA, 2023

  • Deep learning denoising by dimension reduction: Application to molecular line cubes    
    Olympian Symposium, 2023